创建 HWComposer 对象(通过 HAL 层的 HWComposer 硬件模块 或 软件模拟产生 Vsync 信号),现在的 Android 系统基本上都可以看成是通过硬件 HWComposer 产生 Vsync 信号,而不使用软件模拟,所以下面解析都只谈及硬件 HWComposer 的 Vsync 信号;
Choreographer 会通过上面创建的 APP 延时源 mEventThreadSource 对象及其对应的 EventThread 线程来监听同步模拟发出的 Vsync 信号,然后进行绘制(measure/layout/draw)操作。具体逻辑见 Android-Choreographer原理。
classDiagram
IBinder<|--BBinder
BBinder<|--BnInterface
IInterface<|--ISurfaceComposer
BnInterface<|--BnSurfaceComposer
ISurfaceComposer<|--BnSurfaceComposer: 泛型类型
BnSurfaceComposer<|--SurfaceFlinger
system/core/rootdir/init.rc
on property:vold.decrypt=trigger_restart_framework
stop surfaceflinger
start surfaceflinger
# A/B update verifier that marks a successful boot.
exec_start update_verifier
class_start main
class_start late_start
frameworks/native/services/surfaceflinger/surfaceflinger.rc
service surfaceflinger /system/bin/surfaceflinger
class core animation
user system
group graphics drmrpc readproc
onrestart restart zygote
writepid /dev/stune/foreground/tasks
socket pdx/system/vr/display/client stream 0666 system graphics u:object_r:pdx_display_client_endpoint_socket:s0
socket pdx/system/vr/display/manager stream 0666 system graphics u:object_r:pdx_display_manager_endpoint_socket:s0
socket pdx/system/vr/display/vsync stream 0666 system graphics u:object_r:pdx_display_vsync_endpoint_socket:s0
frameworks/native/services/surfaceflinger/main_surfaceflinger.cpp
int main(int, char**) {
// When SF is launched in its own process, limit the number of
// binder threads to 4.
ProcessState::self()->setThreadPoolMaxThreadCount(4);
// start the thread pool
sp<ProcessState> ps(ProcessState::self());
ps->startThreadPool();
// instantiate surfaceflinger
sp<SurfaceFlinger> flinger = new SurfaceFlinger();
setpriority(PRIO_PROCESS, 0, PRIORITY_URGENT_DISPLAY);
set_sched_policy(0, SP_FOREGROUND);
// initialize before clients can connect
flinger->init();
// publish surface flinger
sp<IServiceManager> sm(defaultServiceManager());
sm->addService(String16(SurfaceFlinger::getServiceName()), flinger, false,
IServiceManager::DUMP_FLAG_PRIORITY_CRITICAL);
// run surface flinger in this thread
flinger->run();
return 0;
}
frameworks/native/services/surfaceflinger/SurfaceFlinger.h
class SurfaceFlinger : public BnSurfaceComposer,
public PriorityDumper,
private IBinder::DeathRecipient,
private HWC2::ComposerCallback
{
// these are thread safe
mutable std::unique_ptr<MessageQueue> mEventQueue{std::make_unique<impl::MessageQueue>()};
VSyncModulator mVsyncModulator;
DispSync mPrimaryDispSync;
using CreateBufferQueueFunction =
std::function<void(sp<IGraphicBufferProducer>* /* outProducer */,
sp<IGraphicBufferConsumer>* /* outConsumer */,
bool /* consumerIsSurfaceFlinger */)>;
CreateBufferQueueFunction mCreateBufferQueue;
using CreateNativeWindowSurfaceFunction =
std::function<std::unique_ptr<NativeWindowSurface>(const sp<IGraphicBufferProducer>&)>;
CreateNativeWindowSurfaceFunction mCreateNativeWindowSurface;
}
SurfaceFlinger::SurfaceFlinger(SurfaceFlinger::SkipInitializationTag)
: BnSurfaceComposer(),
Display(false),
......
mMainThreadId(std::this_thread::get_id()),
mCreateBufferQueue(&BufferQueue::createBufferQueue),
mCreateNativeWindowSurface(&impl::NativeWindowSurface::create) {}
void SurfaceFlinger::onFirstRef()
{
mEventQueue->init(this);
}
void SurfaceFlinger::init() {
// start the EventThread
mEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync, SurfaceFlinger::vsyncPhaseOffsetNs,
true, "app");
mEventThread = std::make_unique<impl::EventThread>(mEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
impl::EventThread::InterceptVSyncsCallback(),
"appEventThread");
mSfEventThreadSource =
std::make_unique<DispSyncSource>(&mPrimaryDispSync,
SurfaceFlinger::sfVsyncPhaseOffsetNs, true, "sf");
mSFEventThread =
std::make_unique<impl::EventThread>(mSfEventThreadSource.get(),
[this]() { resyncWithRateLimit(); },
[this](nsecs_t timestamp) {
mInterceptor->saveVSyncEvent(timestamp);
mEventQueue->setEventThread(mSFEventThread.get());
mVsyncModulator.setEventThread(mSFEventThread.get());
// Get a RenderEngine for the given display / config (can't fail)
getBE().mRenderEngine =
RE::impl::RenderEngine::create(HAL_PIXEL_FORMAT_RGBA_8888,
hasWideColorDisplay
? RE::RenderEngine::WIDE_COLOR_SUPPORT
: 0);
getBE().mHwc.reset(
new HWComposer(std::make_unique<Hwc2::impl::Composer>(getBE().mHwcServiceName)));
getBE().mHwc->registerCallback(this, getBE().mComposerSequenceId);
mEventControlThread = std::make_unique<impl::EventControlThread>(
[this](bool enabled) { setVsyncEnabled(HWC_DISPLAY_PRIMARY, enabled); });
// set initial conditions (e.g. unblank default device)
initializeDisplays();
}
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId,
hwc2_display_t displayId, int64_t timestamp) {
Mutex::Autolock lock(mStateLock);
// Ignore any vsyncs from a previous hardware composer.
if (sequenceId != getBE().mComposerSequenceId) {
return;
}
int32_t type;
if (!getBE().mHwc->onVsync(displayId, timestamp, &type)) {
return;
}
bool needsHwVsync = false;
{ // Scope for the lock
Mutex::Autolock _l(mHWVsyncLock);
if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) {
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
disableHardwareVsync(false);
}
}
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (mPrimaryHWVsyncEnabled) {
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
mEventControlThread->setVsyncEnabled(false);
mPrimaryDispSync.endResync();
mPrimaryHWVsyncEnabled = false;
}
if (makeUnavailable) {
mHWVsyncAvailable = false;
}
}
void SurfaceFlinger::run() {
do {
waitForEvent();
} while (true);
}
void SurfaceFlinger::waitForEvent() {
mEventQueue->waitMessage();
}
void SurfaceFlinger::onMessageReceived(int32_t what) {
switch (what) {
case MessageQueue::INVALIDATE: {
bool refreshNeeded = handleMessageTransaction();
refreshNeeded |= handleMessageInvalidate();
refreshNeeded |= mRepaintEverything;
if (refreshNeeded) {
// Signal a refresh if a transaction modified the window state,
// a new buffer was latched, or if HWC has requested a full
// repaint
signalRefresh();//call handleMessageRefresh()
}
break;
}
case MessageQueue::REFRESH: {
handleMessageRefresh();
break;
}
}
}
void SurfaceFlinger::handleMessageRefresh() {
ATRACE_CALL();
mRefreshPending = false;
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
preComposition(refreshStartTime);
rebuildLayerStacks();
setUpHWComposer();
doDebugFlashRegions();
doTracing("handleRefresh");
logLayerStats();
doComposition();
postComposition(refreshStartTime);
mPreviousPresentFence = getBE().mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
mHadClientComposition = false;
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
mHadClientComposition = mHadClientComposition ||
getBE().mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
}
mVsyncModulator.onRefreshed(mHadClientComposition);
mLayersWithQueuedFrames.clear();
}
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
ISurfaceComposer::VsyncSource vsyncSource) {
if (vsyncSource == eVsyncSourceSurfaceFlinger) {
return mSFEventThread->createEventConnection();
} else {
return mEventThread->createEventConnection();
}
}
void SurfaceFlinger::resyncWithRateLimit() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
// No explicit locking is needed here since EventThread holds a lock while calling this method
static nsecs_t sLastResyncAttempted = 0;
const nsecs_t now = systemTime();
if (now - sLastResyncAttempted > kIgnoreDelay) {
resyncToHardwareVsync(false);
}
sLastResyncAttempted = now;
}
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
Mutex::Autolock _l(mHWVsyncLock);
if (makeAvailable) {
mHWVsyncAvailable = true;
} else if (!mHWVsyncAvailable) {
// Hardware vsync is not currently available, so abort the resync
// attempt for now
return;
}
const auto& activeConfig = getBE().mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
const nsecs_t period = activeConfig->getVsyncPeriod();
mPrimaryDispSync.reset();
mPrimaryDispSync.setPeriod(period);
if (!mPrimaryHWVsyncEnabled) {
mPrimaryDispSync.beginResync();
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
mEventControlThread->setVsyncEnabled(true);
mPrimaryHWVsyncEnabled = true;
}
}
void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) {
getHwComposer().setVsyncEnabled(disp,
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
}
frameworks/native/libs/gui/include/gui/ISurfaceComposer.h
enum VsyncSource {
eVsyncSourceApp = 0,
eVsyncSourceSurfaceFlinger = 1
};
:IComposerCallback
ComposerCallback* mCallback;
Return<void> onVsync(Hwc2::Display display, int64_t timestamp) override
{
mCallback->onVsyncReceived(mSequenceId, display, timestamp);
return Void();
}
frameworks/native/services/surfaceflinger/SurfaceFlinger.cpp
DispSync* mDispSync;
Mutex mCallbackMutex; // Protects the following
VSyncSource::Callback* mCallback = nullptr;
virtual void onDispSyncEvent(nsecs_t when) {
VSyncSource::Callback* callback;
{
Mutex::Autolock lock(mCallbackMutex);
callback = mCallback;
if (mTraceVsync) {
mValue = (mValue + 1) % 2;
ATRACE_INT(mVsyncEventLabel.string(), mValue);
}
}
if (callback != nullptr) {
callback->onVSyncEvent(when);
}
}
frameworks/native/services/surfaceflinger/EventThread.cpp
class EventThread : public android::EventThread, private VSyncSource::Callback {
class Connection : public BnDisplayEventConnection {
public:
explicit Connection(EventThread* eventThread);
virtual ~Connection();
virtual status_t postEvent(const DisplayEventReceiver::Event& event);
// count >= 1 : continuous event. count is the vsync rate
// count == 0 : one-shot event that has not fired
// count ==-1 : one-shot event that fired this round / disabled
int32_t count;
private:
virtual void onFirstRef();
status_t stealReceiveChannel(gui::BitTube* outChannel) override;
status_t setVsyncRate(uint32_t count) override;
void requestNextVsync() override; // asynchronous
EventThread* const mEventThread;
gui::BitTube mChannel;
};
EventThread::EventThread(VSyncSource* src, ResyncWithRateLimitCallback resyncWithRateLimitCallback,
InterceptVSyncsCallback interceptVSyncsCallback, const char* threadName)
: mVSyncSource(src),
mResyncWithRateLimitCallback(resyncWithRateLimitCallback),
mInterceptVSyncsCallback(interceptVSyncsCallback) {
for (auto& event : mVSyncEvent) {
event.header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;
event.header.id = 0;
event.header.timestamp = 0;
event.vsync.count = 0;
}
mThread = std::thread(&EventThread::threadMain, this);
pthread_setname_np(mThread.native_handle(), threadName);
pid_t tid = pthread_gettid_np(mThread.native_handle());
// Use SCHED_FIFO to minimize jitter
constexpr int EVENT_THREAD_PRIORITY = 2;
struct sched_param param = {0};
param.sched_priority = EVENT_THREAD_PRIORITY;
if (pthread_setschedparam(mThread.native_handle(), SCHED_FIFO, ¶m) != 0) {
ALOGE("Couldn't set SCHED_FIFO for EventThread");
}
set_sched_policy(tid, SP_FOREGROUND);
}
void EventThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {
std::unique_lock<std::mutex> lock(mMutex);
while (mKeepRunning) {
DisplayEventReceiver::Event event;
Vector<sp<EventThread::Connection> > signalConnections;
signalConnections = waitForEventLocked(&lock, &event);
// dispatch events to listeners...
const size_t count = signalConnections.size();
for (size_t i = 0; i < count; i++) {
const sp<Connection>& conn(signalConnections[i]);
// now see if we still need to report this event
status_t err = conn->postEvent(event);
}
}
}
// This will return when (1) a vsync event has been received, and (2) there was
// at least one connection interested in receiving it when we started waiting.
Vector<sp<EventThread::Connection> > EventThread::waitForEventLocked(
std::unique_lock<std::mutex>* lock, DisplayEventReceiver::Event* event) {
......
if (!timestamp && !eventPending) {
// wait for something to happen
if (waitForVSync) {
// This is where we spend most of our time, waiting
// for vsync events and new client registrations.
//
// If the screen is off, we can't use h/w vsync, so we
// use a 16ms timeout instead. It doesn't need to be
// precise, we just need to keep feeding our clients.
//
// We don't want to stall if there's a driver bug, so we
// use a (long) timeout when waiting for h/w vsync, and
// generate fake events when necessary.
bool softwareSync = mUseSoftwareVSync;
auto timeout = softwareSync ? 16ms : 1000ms;
if (mCondition.wait_for(*lock, timeout) == std::cv_status::timeout) {
if (!softwareSync) {
ALOGW("Timed out waiting for hw vsync; faking it");
}
// FIXME: how do we decide which display id the fake
// vsync came from ?
mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;
mVSyncEvent[0].header.id = DisplayDevice::DISPLAY_PRIMARY;
mVSyncEvent[0].header.timestamp = systemTime(SYSTEM_TIME_MONOTONIC);
mVSyncEvent[0].vsync.count++;
}
} else {
// Nobody is interested in vsync, so we just want to sleep.
// h/w vsync should be disabled, so this will wait until we
// get a new connection, or an existing connection becomes
// interested in receiving vsync again.
mCondition.wait(*lock);
}
// here we're guaranteed to have a timestamp and some connections to signal
// (The connections might have dropped out of mDisplayEventConnections
// while we were asleep, but we'll still have strong references to them.)
return signalConnections;
}
void EventThread::onVSyncEvent(nsecs_t timestamp) {
std::lock_guard<std::mutex> lock(mMutex);
mVSyncEvent[0].header.type = DisplayEventReceiver::DISPLAY_EVENT_VSYNC;
mVSyncEvent[0].header.id = 0;
mVSyncEvent[0].header.timestamp = timestamp;
mVSyncEvent[0].vsync.count++;
mCondition.notify_all();//唤醒EventThread线程
}
status_t EventThread::Connection::postEvent(const DisplayEventReceiver::Event& event) {
ssize_t size = DisplayEventReceiver::sendEvents(&mChannel, &event, 1);
return size < 0 ? status_t(size) : status_t(NO_ERROR);
}
sp<BnDisplayEventConnection> EventThread::createEventConnection() const {
return new Connection(const_cast<EventThread*>(this));
}
/*
* stealReceiveChannel() returns a BitTube to receive events from. Only the receive file
* descriptor of outChannel will be initialized, and this effectively "steals" the receive
* channel from the remote end (such that the remote end can only use its send channel).
*/
status_t EventThread::Connection::stealReceiveChannel(gui::BitTube* outChannel) {
outChannel->setReceiveFd(mChannel.moveReceiveFd());
return NO_ERROR;
}
void EventThread::Connection::requestNextVsync() {
mEventThread->requestNextVsync(this);
}
void EventThread::requestNextVsync(const sp<EventThread::Connection>& connection) {
std::lock_guard<std::mutex> lock(mMutex);
if (mResyncWithRateLimitCallback) {
mResyncWithRateLimitCallback();//callback resyncWithRateLimit in SurfaceFlinger
}
if (connection->count < 0) {
connection->count = 0;
mCondition.notify_all();
}
}
frameworks/native/services/surfaceflinger/EventControlThread.cpp
void EventControlThread::setVsyncEnabled(bool enabled) {
std::lock_guard<std::mutex> lock(mMutex);
mVsyncEnabled = enabled;
mCondition.notify_all();
}
// Unfortunately std::unique_lock gives warnings with -Wthread-safety
void EventControlThread::threadMain() NO_THREAD_SAFETY_ANALYSIS {
auto keepRunning = true;
auto currentVsyncEnabled = false;
while (keepRunning) {
mSetVSyncEnabled(currentVsyncEnabled);
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this, currentVsyncEnabled, keepRunning]() NO_THREAD_SAFETY_ANALYSIS {
return currentVsyncEnabled != mVsyncEnabled || keepRunning != mKeepRunning;
});
currentVsyncEnabled = mVsyncEnabled;
keepRunning = mKeepRunning;
}
}
frameworks/native/libs/gui/DisplayEventReceiver.cpp
ssize_t DisplayEventReceiver::sendEvents(gui::BitTube* dataChannel,
Event const* events, size_t count)
{
return gui::BitTube::sendObjects(dataChannel, events, count);
}
frameworks/native/libs/gui/BitTube.cpp
// Socket buffer size. The default is typically about 128KB, which is much larger than we really
// need. So we make it smaller.
static const size_t DEFAULT_SOCKET_BUFFER_SIZE = 4 * 1024;
BitTube::BitTube(size_t bufsize) {
init(bufsize, bufsize);
}
void BitTube::init(size_t rcvbuf, size_t sndbuf) {
int sockets[2];
if (socketpair(AF_UNIX, SOCK_SEQPACKET, 0, sockets) == 0) {
size_t size = DEFAULT_SOCKET_BUFFER_SIZE;
setsockopt(sockets[0], SOL_SOCKET, SO_RCVBUF, &rcvbuf, sizeof(rcvbuf));
setsockopt(sockets[1], SOL_SOCKET, SO_SNDBUF, &sndbuf, sizeof(sndbuf));
// since we don't use the "return channel", we keep it small...
setsockopt(sockets[0], SOL_SOCKET, SO_SNDBUF, &size, sizeof(size));
setsockopt(sockets[1], SOL_SOCKET, SO_RCVBUF, &size, sizeof(size));
fcntl(sockets[0], F_SETFL, O_NONBLOCK);
fcntl(sockets[1], F_SETFL, O_NONBLOCK);
mReceiveFd.reset(sockets[0]);
mSendFd.reset(sockets[1]);
} else {
mReceiveFd.reset();
ALOGE("BitTube: pipe creation failed (%s)", strerror(errno));
}
}
ssize_t BitTube::sendObjects(BitTube* tube, void const* events, size_t count, size_t objSize) {
const char* vaddr = reinterpret_cast<const char*>(events);
ssize_t size = tube->write(vaddr, count * objSize);
// ALOGE_IF(size<0, "error %d sending %d events", size, count);
return size < 0 ? size : size / static_cast<ssize_t>(objSize);
}
ssize_t BitTube::write(void const* vaddr, size_t size) {
ssize_t err, len;
do {
len = ::send(mSendFd, vaddr, size, MSG_DONTWAIT | MSG_NOSIGNAL);
// cannot return less than size, since we're using SOCK_SEQPACKET
err = len < 0 ? errno : 0;
} while (err == EINTR);
return err == 0 ? len : -err;
}
ssize_t BitTube::recvObjects(BitTube* tube, void* events, size_t count, size_t objSize) {
char* vaddr = reinterpret_cast<char*>(events);
ssize_t size = tube->read(vaddr, count * objSize);
// ALOGE_IF(size<0, "error %d receiving %d events", size, count);
return size < 0 ? size : size / static_cast<ssize_t>(objSize);
}
rameworks/native/services/surfaceflinger/DispSync.cpp
// mThread is the thread from which all the callbacks are called.
sp<DispSyncThread> mThread;
void DispSync::init(bool hasSyncFramework, int64_t dispSyncPresentTimeOffset) {
mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
reset();
beginResync();
}
bool DispSync::addResyncSample(nsecs_t timestamp) {
updateModelLocked();
}
void DispSync::updateModelLocked() {
mThread->updateModel(mPeriod, mPhase, mReferenceTime);
}
frameworks/native/services/surfaceflinger/DispSync.cpp
class DispSyncThread : public Thread {
Vector<EventListener> mEventListeners;
}
virtual bool threadLoop() {
status_t err;
nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
while (true) {
targetTime = computeNextEventTimeLocked(now);
bool isWakeup = false;
if (now < targetTime) {
if (kTraceDetailedInfo) ATRACE_NAME("DispSync waiting");
if (targetTime == INT64_MAX) {
ALOGV("[%s] Waiting forever", mName);
err = mCond.wait(mMutex);
} else {
ALOGV("[%s] Waiting until %" PRId64, mName, ns2us(targetTime));
err = mCond.waitRelative(mMutex, targetTime - now);
}
}
callbackInvocations = gatherCallbackInvocationsLocked(now);
if (callbackInvocations.size() > 0) {
fireCallbackInvocations(callbackInvocations);
}
}
}
Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
Vector<CallbackInvocation> callbackInvocations;
nsecs_t onePeriodAgo = now - mPeriod;
for (size_t i = 0; i < mEventListeners.size(); i++) {
nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i], onePeriodAgo);
if (t < now) {
CallbackInvocation ci;
ci.mCallback = mEventListeners[i].mCallback;
ci.mEventTime = t;
callbackInvocations.push(ci);
mEventListeners.editItemAt(i).mLastEventTime = t;
}
}
return callbackInvocations;
}
void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
for (size_t i = 0; i < callbacks.size(); i++) {
callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
}
}
void updateModel(nsecs_t period, nsecs_t phase, nsecs_t referenceTime) {
Mutex::Autolock lock(mMutex);
mPeriod = period;
mPhase = phase;
mReferenceTime = referenceTime;
mCond.signal();
}
frameworks/native/services/surfaceflinger/MessageQueue.h
namespace impl {
class MessageQueue final : public android::MessageQueue {
class Handler : public MessageHandler {
enum { eventMaskInvalidate = 0x1, eventMaskRefresh = 0x2, eventMaskTransaction = 0x4 };
MessageQueue& mQueue;
int32_t mEventMask;
public:
explicit Handler(MessageQueue& queue) : mQueue(queue), mEventMask(0) {}
virtual void handleMessage(const Message& message);
void dispatchRefresh();
void dispatchInvalidate();
};
friend class Handler;
sp<SurfaceFlinger> mFlinger;
sp<Looper> mLooper;
android::EventThread* mEventThread;
sp<IDisplayEventConnection> mEvents;
gui::BitTube mEventTube;
sp<Handler> mHandler;
}
void MessageQueue::init(const sp<SurfaceFlinger>& flinger) {
mFlinger = flinger;
mLooper = new Looper(true);//system/core/include/utils/Looper.h
mHandler = new Handler(*this);
}
void MessageQueue::setEventThread(android::EventThread* eventThread) {
if (mEventThread == eventThread) {
return;
}
if (mEventTube.getFd() >= 0) {
mLooper->removeFd(mEventTube.getFd());
}
mEventThread = eventThread;
mEvents = eventThread->createEventConnection();
mEvents->stealReceiveChannel(&mEventTube);
mLooper->addFd(mEventTube.getFd(), 0, Looper::EVENT_INPUT, MessageQueue::cb_eventReceiver,
this);
}
void MessageQueue::waitMessage() {
do {
IPCThreadState::self()->flushCommands();
int32_t ret = mLooper->pollOnce(-1);
switch (ret) {
case Looper::POLL_WAKE:
case Looper::POLL_CALLBACK:
continue;
case Looper::POLL_ERROR:
ALOGE("Looper::POLL_ERROR");
continue;
case Looper::POLL_TIMEOUT:
// timeout (should not happen)
continue;
default:
// should not happen
ALOGE("Looper::pollOnce() returned unknown status %d", ret);
continue;
}
} while (true);
}
int MessageQueue::cb_eventReceiver(int fd, int events, void* data) {
MessageQueue* queue = reinterpret_cast<MessageQueue*>(data);
return queue->eventReceiver(fd, events);
}
int MessageQueue::eventReceiver(int /*fd*/, int /*events*/) {
ssize_t n;
DisplayEventReceiver::Event buffer[8];
while ((n = DisplayEventReceiver::getEvents(&mEventTube, buffer, 8)) > 0) {
for (int i = 0; i < n; i++) {
if (buffer[i].header.type == DisplayEventReceiver::DISPLAY_EVENT_VSYNC) {
mHandler->dispatchInvalidate();
break;
}
}
}
return 1;
}
void MessageQueue::Handler::dispatchInvalidate() {
if ((android_atomic_or(eventMaskInvalidate, &mEventMask) & eventMaskInvalidate) == 0) {
mQueue.mLooper->sendMessage(this, Message(MessageQueue::INVALIDATE));
}
}
void MessageQueue::Handler::handleMessage(const Message& message) {
switch (message.what) {
case INVALIDATE:
android_atomic_and(~eventMaskInvalidate, &mEventMask);
mQueue.mFlinger->onMessageReceived(message.what);
break;
case REFRESH:
android_atomic_and(~eventMaskRefresh, &mEventMask);
mQueue.mFlinger->onMessageReceived(message.what);
break;
}
}
frameworks/native/services/surfaceflinger/DisplayHardware/HWC2.h
// Implement this interface to receive hardware composer events.
//
// These callback functions will generally be called on a hwbinder thread, but
// when first registering the callback the onHotplugReceived() function will
// immediately be called on the thread calling registerCallback().
//
// All calls receive a sequenceId, which will be the value that was supplied to
// HWC2::Device::registerCallback(). It's used to help differentiate callbacks
// from different hardware composer instances.
class ComposerCallback {
public:
virtual void onHotplugReceived(int32_t sequenceId, hwc2_display_t display,
Connection connection) = 0;
virtual void onRefreshReceived(int32_t sequenceId,
hwc2_display_t display) = 0;
virtual void onVsyncReceived(int32_t sequenceId, hwc2_display_t display,
int64_t timestamp) = 0;
virtual ~ComposerCallback() = default;
};
frameworks/native/libs/gui/IGraphicBufferProducer.cpp
virtual status_t queueBuffer(int buf,
const QueueBufferInput& input, QueueBufferOutput* output) {
Parcel data, reply;
data.writeInterfaceToken(IGraphicBufferProducer::getInterfaceDescriptor());
data.writeInt32(buf);
data.write(input);
status_t result = remote()->transact(QUEUE_BUFFER, data, &reply);
return result;
}
status_t BnGraphicBufferProducer::onTransact(
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
switch(code) {
case QUEUE_BUFFER: {
CHECK_INTERFACE(IGraphicBufferProducer, data, reply);
int buf = data.readInt32();
QueueBufferInput input(data);
QueueBufferOutput output;
status_t result = queueBuffer(buf, input, &output);
reply->write(output);
reply->writeInt32(result);
return NO_ERROR;
}
│79 status_t MonitoredProducer::queueBuffer(int slot, const QueueBufferInput& input,
│80 QueueBufferOutput* output) {
>│81 return mProducer->queueBuffer(slot, input, output);
│82 }
│83
│750 status_t BufferQueueProducer::queueBuffer(int slot,
│751 const QueueBufferInput &input, QueueBufferOutput *output) {
>│977 frameAvailableListener->onFrameAvailable(item);
│46 void BufferQueue::ProxyConsumerListener::onFrameAvailable(
│47 const BufferItem& item) {
│48 sp<ConsumerListener> listener(mConsumerListener.promote());
│49 if (listener != NULL) {
>│50 listener->onFrameAvailable(item);
│51 }
│52 }
│104 void ConsumerBase::onFrameAvailable(const BufferItem& item) {
│105 CB_LOGV("onFrameAvailable");
│106
│107 sp<FrameAvailableListener> listener;
│108 { // scope for the lock
│109 Mutex::Autolock lock(mFrameAvailableMutex);
│110 listener = mFrameAvailableListener.promote();
│111 }
│112
│113 if (listener != NULL) {
│114 CB_LOGV("actually calling onFrameAvailable");
>│115 listener->onFrameAvailable(item);
│116 }
│117 }
│723 // ---------------------------------------------------------------------------
│724 // Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
│725 // ---------------------------------------------------------------------------
│726
│727 void BufferLayer::onFrameAvailable(const BufferItem& item) {
│728 // Add this buffer from our internal queue tracker
│729 { // Autolock scope
B+>│730 Mutex::Autolock lock(mQueueItemLock);